If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5c^2-9c=0
a = 5; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·5·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*5}=\frac{0}{10} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*5}=\frac{18}{10} =1+4/5 $
| 2(x-4)+7=-19 | | 3x+37+30+6x=180 | | 21+3y-3=13y-10-3y | | 4p=6(4p+5) | | 36=-46+m | | 4+360+3+x=85 | | (6w+13)^1/2=(8w+3)^1/2 | | Y=9xx-3 | | 8x-1=15x-36 | | 2+(3x)=-15 | | 2x(1+4)=90 | | 3.1+x=5.7 | | x+4/40=10/X+4 | | 17-7x=-8x+11 | | 16c+26c+16c+11=180 | | 10t^2-29=10 | | (6w+13)^1/2=(8w+13)^1/2 | | 88.1-2.3f=74.46 | | 9(-10)=3(x+6) | | 5r-15=2r | | 2+z=15 | | -102=-5x-5x+8 | | 33+(b-8)+(b-18)=180 | | 3x/4+x/6+1/6=3-x/6 | | 3(4+2a)=-24 | | 6x+77=4x+43 | | Y=-3/2(2y-10)-7 | | 7.4(x)=1 | | 4x+2x+34=180 | | -6(3-3a)-8(6a5)=32 | | 6w^2+7w-5=0 | | 7.4x=1 |